High resolution reconstruction for 3D SPECT
نویسندگان
چکیده
In this work, we have developed a new method for SPECT (single photon emission computed tomography) image reconstruction, which has shown the potential to provide higher resolution results than any other conventional methods using the same projection data. Unlike the conventional FBP(filtered backprojection) and EM(expectation maximization) type algorithms, we utilize as much system response information as we can during the reconstruction process. This information can be pre-measured during the calibration process and stored in the computer. By selecting different sampling schemes for the point response measurement, different system kernel matrices are obtained. Reconstruction utilizing these kernels generates a set of reconstructed images of the same source. Based on these reconstructed images and their corresponding sampling schemes, we are able to achieve a high resolution final image that best represents the object. Because a uniform attenuation, resolution variation and some other effects are included during the formation of the system kernel matrices, the reconstruction from the acquired projection data also compensates for all these effects correctly.
منابع مشابه
Performance of myocardial perfusion imaging using multi-focus fan beam collimator with resolution recovery reconstruction in a comparison with conventional SPECT
Objective: IQSPECT is an advanced high-speed SPECT modality for performing myocardial perfusion imaging (MPI), which uses a multi-focus fan beam collimator with resolution recovery reconstruction. The aim of this study was to compare IQSPECT compared with conventional SPECT interms of performance based on standard clinical protocols. In addition, we examined the concordance between convention...
متن کاملEvaluation of the Reconstruction Parameters of Brain Dopamine Transporter SPECT Images Obtained by a Fan Beam Collimator: A Comparison with Parallel-hole Collimators
Objective(s): The purpose of this study was to examine the optimal reconstruction parameters for brain dopamine transporter SPECT images obtained with a fan beam collimator and compare the results with those obtained by using parallel-hole collimators.Methods: Data acquisition was performed using two SPECT/CT devices, namely a Symbia T6 and an Infinia Hawkeye 4 (device A and B) equipped with fa...
متن کاملCollimator-detector response compensation in molecular SPECT reconstruction using STIR framework
Introduction:It is well-recognized that collimator-detector response (CDR) is the main image blurring factor in SPECT. In this research, we compensated the images for CDR in molecular SPECT by using STIR reconstruction framework. Methods: To assess resolution recovery capability of the STIR, a phantom containing five point sources along with a micro Derenzo p...
متن کاملEvaluation of the performance of parallel-hole collimator for high resolution small animal SPECT: A Monte Carlo study
Introduction: Image quality and accuracy of in vivo activity quantification in SPECT are affected by collimator penetration and scatter components, especially in high energy imaging. These phenomena highly depend on the collimator characteristic and photon energy. The presence of penetrated and scattered photons from collimator in SPECT images degrades spatial resolution, contr...
متن کاملInfluences of reconstruction and attenuation correction in brain SPECT images obtained by the hybrid SPECT/CT device: evaluation with a 3‐dimensional brain phantom
Objective: The aim of this study was to evaluate the influences of reconstruction and attenuation correction on the differences in the radioactivity distributions in 123I brain SPECT obtained by the hybrid SPECT/CT device. Methods: We used the 3-dimensional (3D) brain phantom, which imitates the precise structure of gray mater, white matter and bone regions. It was filled with 123I solution (20...
متن کاملImpact of Novel Incorporation of CT-based Segment Mapping into a Conjugated Gradient Algorithm on Bone SPECT Imaging: Fundamental Characteristics of a Context-specific Reconstruction Method
Objective(s): The latest single-photon emission computed tomography (SPECT)/computed tomography (CT) reconstruction system, referred to as xSPECT Bone™, is a context-specific reconstruction system utilizing tissue segmentation information from CT data, which is called a zone map. The aim of this study was to evaluate theeffects of zone-map enhancement incorporated into the ordered-subset conjug...
متن کامل